An Efficient Asynchronous Parallel Evolutionary Algorithm Based on Message Passing Model for Solving Complex Nonlinear Constrained Optimization

نویسندگان

  • Hao Wu
  • Chunlin Xu
  • Xiufen Zou
چکیده

Abstract This study presents an asynchronous parallel evolutionary algorithm based on message passing model (MAPEA) for solving complex function optimization problems with constraints. The MAPEA combines a local search into the global search. The local search is based on Tabu search, and the radius of neighborhood is self-adaptive. The MAPEA is implemented in Parallel Virtual Machine (PVM) programming environment and used to solve two widely applied complex optimization problems. The speedup and parallel efficiency of MAPEA are analyzes and comparisons with other published results are made. Numerical experiments show that MAPEA exhibits good performance and can handle complex constrained optimization problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Full waveform seismic inversion using a distributed system of computers

The aim of seismic waveform inversion is to estimate the elastic properties of the Earth’s subsurface layers from recordings of seismic waveform data. This is usually accomplished by using constrained optimization often based on very simplistic assumptions. Full waveform inversion uses a more accurate wave propagation model but is extremely difficult to use for routine analysis and interpretati...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009